
Computers & Security 124 (2023) 103006 

Contents lists available at ScienceDirect 

Computers & Security 

journal homepage: www.elsevier.com/locate/cose 

The Threat of Offensive AI to Organizations 

Yisroel Mirsky 

a , ∗, Ambra Demontis b , Jaidip Kotak 

a , Ram Shankar c , Deng Gelei d , Liu Yang 

d , 
Xiangyu Zhang 

e , Maura Pintor f , Wenke Lee 

g , Yuval Elovici a , Battista Biggio 

f 

a Ben-Gurion University of the Negev, Israel 
b University of Cagliari, Italy 
c Microsoft, United States of America 
d Nanyang Technological University, Singapore 
e Purdue University, United States of America 
f University of Cagliari & Pluribus One, Italy 
g Georgia Institute of Technology, United States of America 

a r t i c l e i n f o 

Article history: 

Received 10 July 2022 

Revised 7 October 2022 

Accepted 3 November 2022 

Available online 6 November 2022 

Keywords: 

Offensive AI 

APT 

Cyber security 

Organization security 

Adversarial machine learning 

Deepfake 

AI-Capable adversary 

a b s t r a c t 

AI has provided us with the ability to automate tasks, extract information from vast amounts of data, 

and synthesize media that is nearly indistinguishable from the real thing. However, positive tools can 

also be used for negative purposes. In particular, cyber adversaries can use AI to enhance their attacks 

and expand their campaigns. 

Although offensive AI has been discussed in the past, there is a need to analyze and understand the 

threat in the context of organizations. For example, how does an AI-capable adversary impact the cyber 

kill chain? Does AI benefit the attacker more than the defender? What are the most significant AI threats 

facing organizations today and what will be their impact on the future? 

In this study, we explore the threat of offensive AI on organizations. First, we present the background 

and discuss how AI changes the adversary’s methods, strategies, goals, and overall attack model. Then, 

through a literature review, we identify 32 offensive AI capabilities which adversaries can use to enhance 

their attacks. Finally, through a panel survey spanning industry, government and academia, we rank the 

AI threats and provide insights on the adversaries. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

For decades, organizations, including government agencies, hos- 

itals, and financial institutions, have been the target of cyber at- 

acks ( Knake, 2017; Mattei, 2017; Tariq, 2018 ). These cyber attacks 

ave been carried out by experienced hackers using manual meth- 

ds. In recent years there has been a boom in the development of 

rtificial intelligence (AI), which has enabled the creation of soft- 

are tools that have helped to automate tasks such as prediction, 

nformation retrieval, and media synthesis. Throughout this period, 

embers of academia and industry have utilized AI 1 in the context 
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f improving the state of cyber defense ( Liu and Lang, 2019; Ma- 

adi et al., 2018; Mirsky et al., 2018 ) and threat analysis ( Cohen

t al., 2020; Deepreflect, 2021; Ucci et al., 2019 ). However, AI is a 

ouble edged sword, and attackers can utilize it to improve their 

alicious campaigns. 

Therefore, we define Offensive AI as 

“The use or abuse of AI to accomplish a malicious task”

Offensive Use of AI. Adversaries can improve their tactics to 

aunch attacks that were not possible before. For example, with 

eep learning one can perform highly effective spear phishing at- 

acks by impersonating their employer’s face and voice ( Mirsky 

nd Lee, 2021; Stupp, 2020 ). It is also possible to improve the 

tealth capabilities of attacks by enabling them to proceed without 

uman supervision and aid (making it automatic). For example, if 

alware could perform a progressive infection of hosts in a net- 

ork (a.k.a., lateral movement) on its own, then this would reduce 

ommand and control (C&C) communication ( Truong et al., 2019; 

elinka et al., 2018 ). Other capabilities include the use of AI to find
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ero-day vulnerabilities in software, automate reverse engineering, 

xploit side channels efficiently, build realistic fake personas, and 

o perform many more malicious activities with improved efficacy 

more examples are presented later in Section 3 ). 

Offensive Abuse of AI. Adversarial machine learning is the 

tudy of security vulnerabilities in AI. It has been shown that an 

dversary can craft training samples to alter the functionalities 

f a model e.g., insert a backdoor ( Gu et al., 2017 ), obtain a de-

ired classification manipulating the test samples (e.g., evade de- 

ection) ( Biggio and Roli, 2018 ) and even infer confidential infor- 

ation about a model ( Orekondy et al., 2019 ) or the data on which

t was trained ( Fredrikson et al., 2015 ). Since organizations use AI 

o automate the management, maintenance, operation and defence 

f their systems and services, an adversary can accomplish their 

alicious goals by using machine learning offensively on these sys- 

ems (adversarial machine learning). 

We note that some attacks are achievable without using or 

busing AI. However, attackers can substantially reduce the effort 

equired to perform an attack if they use AI to make it automatic 

r semi-automatic. By reducing their effort in creating effective 

trategies, attackers can maximize their return by scaling the at- 

acks in their strength and quantity. Moreover, by acting simul- 

aneously in several phases of the attack chain, the attacker can 

chieve synergistic effects on the speed and power of the attacks, 

ecoming even more dangerous. On the other hand, some attacks 

ave been enabled by AI, such as the cloning of an individual’s 

oice in a sophisticated social engineering attack ( Brewster, 2021 ). 

.1. Study overview 

In this work, we provide a study of knowledge on offensive 

I in the context of enterprise security. The goal of this paper 

s to help the community (1) better understand the current im- 

act of offensive AI on organizations, (2) prioritize research and 

evelopment of defensive solutions, and (3) identify trends that 

ay emerge in the near future. This work isn’t the first to raise 

wareness of offensive AI. In Brundage et al. (2018) the authors 

arned the community that AI can be used for unethical and 

riminal purposes with examples taken from various domains. In 

aldwell et al. (2020) a workshop was held that attempted to iden- 

ify the potential top threats of AI in criminology. However, both 

hese works relate to the threat of AI on society overall and are 

ot specific to organizations and their networks. Moreover, despite 

heir efforts and preliminary results, these previous analyses pro- 

ide only examples of how AI can be used to attack and a possible

anking of their risk, while our study gives a structured view of 

ffensive AI through the standard methodologies used to identify 

otential attack tactics against organizations, deriving strategic in- 

ights relevant to defend from these threats. 

To accomplish these goals, we performed a literature review to 

dentify the capabilities of an AI-capable adversary. We then per- 

ormed a panel survey to identify which of these capabilities rep- 

esent the most relevant threats in practice. There were 35 survey 

articipants: 16 from academia and 19 from industry. The partici- 

ants from industry were from a wide profile of organizations such 

s MITRE, IBM, Microsoft, Google, Airbus, Bosch, Fujitsu, Hitachi, 

nd Huawei. 

From our literature review, we identified 32 offensive AI capa- 

ilities against organizations. Our panel survey revealed that the 

ost significant threats are the capabilities that improve social 

ngineering attacks (e.g., the use of deepfakes to clone the voice 

f employees). We also found that industry members are most 

oncerned about attacks that enable attackers to steal intellectual 

roperty and detect vulnerabilities in their software. Finally, we 

ave also found that modern offensive AI mainly impacts the ini- 

ial steps of the cyber kill chain (reconnaissance, resource devel- 
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pment, and initial access). This is because AI technologies are not 

ature enough to create agents able to carry on attacks that pro- 

eed without human supervision and aid. A complete list of our 

ndings can be found in Section 5.1 . 

.2. Contributions 

In this study, we make the following contributions: 

• An overview of how AI can be used to attack organizations and 

its influence on the cyber kill chain ( Section 2.3 ). 

• An enumeration and description of the 32 offensive AI capabili- 

ties that threaten organizations, based on literature review and 

current events ( Section 3 ). These capabilities can be categorised 

as (1) automation, (2) campaign resilience, (3) credential theft, 

(4) exploit development, (5) information gathering, (6) social 

engineering, and (7) stealth. 

• A threat ranking and insights on how offensive AI impacts 

organizations, based on a panel survey with members from 

academia, industry, and government ( Section 4 ). 

• A forecast of the AI threat horizon and the resulting shifts in 

attack strategies ( Section 5 ). 

.3. Article structure 

This article is structured as follows: 

• In Section 2 , we provide the reader with a primer on topics 

which are important for understanding the literature review. 

The section introduces concepts about AI, offensive AI, and how 

offensive AI impacts an organization’s security. 

• In Section 3 , we offer our literature review of offensive AI in 

the context of an organization’s security. 

• In Section 4 , we present the results from a panel survey to help

identify the least and most significant threats of offensive AI to 

organizations. 

• In Section 5 , we summarize our findings and provide our ob- 

servations on the matter. 

. Background 

In this section, we provide the reader with technical aspects re- 

ated to offensive AI and introduce offensive AI concepts related 

o organizations’ security. Later in Section 3 , we review the latest 

esearch on the topic. 

.1. AI And machine learning 

AI is a larger domain that mainly deals with creating algorithms 

hat can automate complex tasks. Early AI models were rule-based 

ystems designed using an expert’s knowledge ( Yager, 1984 ), fol- 

owed by search algorithms for selecting optimal decisions (e.g., 

nding paths or playing games Zeng and Church, 2009 ). Today, the 

ost popular type of AI is machine learning (ML), which is a data- 

riven approach to AI where programs automatically improve their 

erformance on a task-given experience. Deep learning (DL) is a 

ype of ML where an extensive artificial neural network is used 

s the predictive model. Breakthroughs in DL have led to its ubiq- 

ity in applications such as industrial automation, forecasting, and 

lanning due to its ability to reason upon and generate complex 

ata. Due to the popularity of ML, our literature review inevitably 

ollows this trend. Despite considering all methods and techniques 

elated to using AI in general, we found the vast majority of the 

ffensive AI techniques we found use ML to perform AI-based at- 

acks. Therefore, the majority of the works reviewed in this study 

nvolve some form of ML. 
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Table 1 

Examples of where a model can be trained and executed in an attack on an organiza- 

tion. Onsite refers to being within the premisis or network of the organization. 

Training Execution 

Offsite Onsite Offsite Onsite 
Example 

• • Vulnerability detection 

• • Side channel keylogging 

• • Channel compression for exfiltration 

• • Traffic shaping for evasion 

• • • Few-shot learning for record tampering 
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In general, a machine learning model can be trained on data 

ith explicit ground truth (supervised), with no ground truth 

unsupervised), or with a mix of both (semi-supervised). The 

rade-off between supervised and non-supervised approaches is 

hat supervised methods often have much better performance at 

 given task but require labeled data which can be expensive 

r impractical to collect. Moreover, unsupervised techniques are 

pen-world, meaning that they can identify novel patterns that 

ay have been overlooked. Another training paradigm is rein- 

orcement learning, where a model is trained based on reward 

or good performance. Lastly, for generating content, a popular 

ramework is adversarial learning. This was first popularised in 

oodfellow et al. (2014) where the generative adversarial network 

GAN) was proposed. A GAN uses a discriminator model to ‘help’ 

 generator model produce realistic content by giving feedback on 

ow the content fits a target distribution. 

In the context of offensive AI, the location in which an attacker 

erforms training or execution will depend on the attacker’s ob- 

ective and strategy. For example, for reconnaissance tasks, training 

nd execution will likely take place offsite from the organization. 

owever, for attacks, the training and execution may take place 

nsite, offsite, or both. Another possibility is where the adversary 

ses few-shot learning ( Wang et al., 2020c ) by training on general 

ata offsite and then fine tuning on the target data onsite. Addi- 

ional examples can be found in Table 1 . In all cases, the adversary

ill first design and evaluate their model offsite prior to its usage 

n the organization to ensure its success and avoid detection. 

For onsite execution, an attacker runs the risk of detection if 

he model is complex (e.g., a DL model). For example, when the 

odel is transferred over to the organization’s network or when 

he attacker’s model begins to utilize resources, it may trigger the 

rganization’s anomaly detection system. To mitigate this issue, the 

dversary must consider a trade-off between stealth and effective- 

ess. For example, the adversary may (1) execute the model dur- 

ng off hours or on non-essential devices, (2) leverage an insider 

o transfer the model, or (3) transfer the observations off-site for 

xecution. 

.2. Offensive AI 

As noted in Section 1 , there are two forms of offensive AI (OAI):

ttacks using AI and attacks abusing AI. For example, an adversary 

an (1) use AI to improve the efficiency of an attack (e.g., informa- 

ion gathering, attack automation, and vulnerability discovery) or 

2) use knowledge of AI to exploit the defender’s AI products and 

olutions (e.g., to evade a defense or to plant a trojan in a prod-

ct). The latter form of OAI is commonly referred to as adversarial 

achine learning. 

We will now elaborate on these two forms of offensive AI. 

.2.1. Attacks using AI 

Although there are a wide variety of AI tasks which can be 

sed in attacks, we now list the most common ones. Note that 

hese tasks are not mutually exclusive, in fact some build on each 
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ther and produce a synergistic effect on their impact on the at- 

ack chain. 

Analysis. This is the task of mining or extracting useful insights 

from data or a model. Some examples of analysis for offense 

are the use of explainable AI techniques ( Ribeiro et al., 2016 ) 

to identify how to better hide artifacts (e.g., in malware) and 

the clustering or embedding of information on an organiza- 

tion to identify assets or targets for social engineering. 

Decision Making. The task of producing a strategic plan or co- 

ordinating an operation. Examples of this in offensive AI are 

the use of swarm intelligence to operate an autonomous 

botnet ( Castiglione et al., 2014 ) and the use of heuristic 

attack graphs to plan optimal attacks on networks ( Bland 

et al., 2020 ). 

Generation. This is the task of creating content that fits a tar- 

get distribution which, in some cases, requires realism in 

the eyes of a human. Examples of generation for offensive 

uses include the tampering of media evidence ( Mirsky et al., 

2019; Schreyer et al., 2019 ), intelligent password guessing 

( Garg and Ahuja, 2019; Hitaj et al., 2019 ), and traffic shap- 

ing to avoid detection ( Han et al., 2020; Novo and Morla, 

2020 ). Deepfakes are another instance of offensive AI in this 

category. A deepfake is a believable media created by a DL 

model. The technology can be used to impersonate a victim 

by puppeting their voice or face to perpetrate a phishing at- 

tack ( Mirsky and Lee, 2021 ). 

Prediction. This is the task of making a prediction based on 

previously observed data. Common examples are classifica- 

tion, anomaly detection, and regression. Examples of predic- 

tion for an offensive purpose includes the identification of 

keystrokes on a smartphone based on motion ( Hussain et al., 

2016; Javed et al., 2020; Marquardt et al., 2011 ), the selec- 

tion of the weakest link in the chain to attack ( Abid et al.,

2018 ), and the localization of software vulnerabilities for ex- 

ploitation ( Jiang et al., 2019; Lin et al., 2020; Mokhov et al., 

2014 ). 

Retrieval. This is the task of finding content that matches or 

that is semantically similar to a given query. For example, 

in offense, retrieval algorithms can be used to track an ob- 

ject or an individual in a compromised surveillance system 

( Rahman et al., 2019; Zhu et al., 2018 ), to find a disgrun- 

tled employee (as a potential insider) using semantic anal- 

ysis on social media posts, and to summarize lengthy doc- 

uments ( Zhang et al., 2016 ) during open source intelligence 

(OSINT) gathering in the reconnaissance phase. 

.2.2. Attacks abusing AI 

An attacker can use its AI knowledge to exploit ML model 

ulnerabilities violating its confidentiality, integrity, or availabil- 

ty ( Biggio and Roli, 2018 ). The vast majority of these attacks is 

tudied in Adversarial Machine Learning, a branch of research that 

nvestigates on how to obtain specific malfunctions on ML models 

o create malicious attacks. These attacks can be staged at either 
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raining (development) or test time (deployment) through one of 

he following attack vectors: 

Modify the Training Data. Here the attacker modifies the train- 

ing data to harm the integrity or availability of the model. 

Denial of service (DoS) poisoning attacks ( Biggio et al., 2012; 

Koh and Liang, 2017; Muñoz-González et al., 2017 ) are when 

the attacker decreases the model’s performance until it is 

unusable. A backdoor poisoning attack ( Chen et al., 2017; Gu 

et al., 2017 ) or trojaning attack ( Liu et al., 2017 ), is where

the attacker teaches the model to recognize an unusual pat- 

tern that triggers a behavior (e.g., classify a sample as safe). 

A triggerless version of this attack causes the model to mis- 

classify a test sample without adding a trigger pattern to the 

sample itself ( Aghakhani et al., 2021; Shafahi et al., 2018 ) 

Modify the Test Data. In this case, the attacker modifies test 

samples to have them misclassified ( Biggio et al., 2013; 

Goodfellow et al., 2015; Szegedy et al., 2014 ). For example, 

altering the letters of a malicious email to have it misclas- 

sified as legitimate, or changing a few pixels in an image to 

evade facial recognition ( Sharif et al., 2016 ). Therefore, these 

types of attacks are often referred to as evasion attacks. By 

modifying test samples ad-hoc to increase the model’s re- 

source consumption, the attacker can also slow down the 

model performances ( Shumailov et al., 2021 ). 

Analyze the Model’s Responses. Here, the attacker sends 

a number of crafted queries to the model and observes 

the responses to infer information about the model’s pa- 

rameters or training data. To learn about the training 

data, there are membership inference ( Shokri et al., 2017 ), 

deanonymization ( Narayanan and Shmatikov, 2008 ), and 

model inversion ( Hidano et al., 2017 ) attacks. For learn- 

ing about the model’s parameters there are model steal- 

ing/extraction ( Jia et al., 2021; Juuti et al., 2019 ), and 

blind-spot detection ( Zhang et al., 2019 ), state predic- 

tion ( Woh and Lee, 2018 ). 

Modify the Training Code. This is where the attacker performs 

a supply chain attack by modifying a library used to train 

ML models (e.g., via an open-source project). For example, 

compromising a loss (training) function to insert a back- 

door ( Bagdasaryan and Shmatikov, 2021 ) or slowing down 

the created model ( Cinà et al., 2022 ). 

Modify the Model’s Parameters. In this attack vector, the at- 

tacker accesses a trained model (e.g., via a model zoo or 

security breach) and tampers its parameters to insert a la- 

tent behavior. These attacks can be performed at the soft- 

ware ( Wang et al., 2020; 2020; Yao et al., 2019 ) or hard-

ware ( Breier et al., 2018a ) levels (a.k.a. fault attacks). 

Depending on the scenario, an attacker may not have full 

nowledge or access to the target model: 

• White-Box (Perfect-Knowledge) Attacks: The attacker knows 

everything about the target system. This is the worst case for 

the system defender. Although it is not very likely to happen 

in practice, this setting is interesting as it provides an empirical 

upper bound on the attacker’s performance. 

• Black-Box (Zero-Knowledge) Attacks: The attacker knows only 

the task the model is designed to perform and which kind of 

features are used by the system in general (e.g., if a malware 

detector has been trained to perform static or dynamic analy- 

sis). The attacker may also be able to analyze the model’s re- 

sponses in a query-based manner to get feedback on certain 

inputs. 

• Gray-Box (Limited-Knowledge) Attacks: The attacker has par- 

tial knowledge of the target system (e.g., the learning algorithm, 

Isr
ael

-U
S BI
architecture, etc.,). 

4 
In a black or gray box scenario, the attacker can build a surro- 

ate ML model and try to devise the attacks against it as the at- 

acks often transfer between different models. Biggio et al. (2013) , 

emontis et al. (2019a) . 

An attacker does not need to be an expert at machine learn- 

ng to implement these attacks. Many can be acquired from open- 

ource libraries online ( Croce and Hein, 2020; Nicolae et al., 2018; 

apernot et al., 2018; Pintor et al., 2022 ). 

.3. Offensive AI vs organizations 

In this section, we provide an overview of offensive AI in the 

ontext of organizations. First, we review a popular attack model 

or enterprises. Then we will identify how an AI-capable adversary 

mpacts this model by discussing the adversary’s new motivations, 

oals, capabilities, and requirements. Later in Section 3 , we will de- 

ail the adversary’s techniques based on our literature review. 

.3.1. Attacker motivation 

Conventional adversaries use manual effort, common tools, and 

xpert knowledge to reach their goals. In contrast, an AI-capable 

dversary can use AI to automate its tasks, enhance its tools, and 

vade detection. These new abilities affect the cyber kill chain. 

First, let’s discuss why an adversary would consider using AI of- 

ensively on an organization. From our literature review (detailed 

ater in Section 3 ), we observed three reasons why an adversary 

ay be motivated to use offensive AI against an organization: cov- 

rage, speed, and success. 

Coverage. By using AI, an adversary can scale up its operations 

by automating complex tasks to decrease human labor and 

increase the chances of success. For example, AI can be used 

to automatically craft ( Mirsky and Lee, 2021; Stupp, 2020 ) 

and launch (employing Leviathan and Matias, 2018; Rebryk 

and Beliaev, 2020; Singh and Thakur, 2020 ) spear phishing 

attacks, distill ( Zhang et al., 2016 ) data collected from OS- 

INT, and reach more assets within a network ( Matta et al., 

2019; Ou et al., 2005 ) to gain a stronger foothold. In other 

words, AI enables adversaries to target more organizations 

with higher precision attacks with a smaller workforce. 

Speed. With AI, an adversary can reach its goals faster. For ex- 

ample, machine learning can be used to help extract cre- 

dentials ( Calzavara et al., 2015; Wang et al., 2019a ), intelli- 

gently select the next best target during lateral movement 

( Horák et al., 2019 ), spy on users to obtain information (e.g., 

perform speech to text on eavesdropped audio) ( White et al., 

2011 ), or find zero-days in software ( Jiang et al., 2019; Lin 

et al., 2020; Mokhov et al., 2014 ). By reaching a goal faster, 

the adversary not only saves time for other ventures but can 

also minimize its presence (duration) within the defender’s 

network. 

Success. By enhancing its operations with AI, an adversary in- 

creases its likelihood of success. Namely, ML can be used 

to (1) make the operation more covert by minimizing or 

camouflaging network traffic (such as C2 traffic) ( Han et al., 

2020; Novo and Morla, 2020 ) and by exploiting weaknesses 

in the defender’s AI models such as an ML-based intrusion 

detection system (IDS) ( Sidi et al., 2020 ), (2) identify op- 

portunities such as good targets for social engineering at- 

tacks ( Abid et al., 2018 ) and novel vulnerabilities ( Jiang et al.,

2019; Lin et al., 2020; Mokhov et al., 2014 ), (3) enable bet- 

ter attack vectors such as using deepfakes in spear phish- 

ing attacks ( Stupp, 2020 ), (4) plan optimal attack strategies 

( Bland et al., 2020; Horák et al., 2019 ), and (5) strengthen 

persistence in the network through automated bot coordi- 

nation ( Castiglione et al., 2014 ) and malware obfuscation 

( Datta, 2020 ). 
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We note that these motivations are not mutually exclusive. For 

xample, the use of AI to automate a phishing campaign increases 

overage, speed, and success. 

.3.2. The attack model 

There are a variety of threat agents which target organizations. 

hese agents are cyber terrorists, cyber criminals, employees, hack- 

ivists, nation states, online social hackers, script kiddies, and other 

rganizations like competitors. There are also some non-target spe- 

ific agents, such as certain botnets and worms, which threaten the 

ecurity of an organization. A threat agent may be motivated for 

arious reasons. For example, to (1) make money through theft or 

ansom, (2) gain information through espionage, (3) cause physical 

r psychological damage for sabotage, terrorism, fame, or revenge, 

4) reach another organization, and (5) obtain foothold on the or- 

anization as an asset for later use ( Krebs, 2014 ). These agents not

nly pose a threat to the organization, but also to its employees, 

ustomers, and the general public as well (e.g., attacks on critical 

nfrastructure). 

In an attack, there may be a number of attack steps that the 

hreat agent must accomplish. These steps depend on the adver- 

ary’s goal and strategy. For example, in an advanced persistent 

hreat (APT) ( Alshamrani et al., 2019; Chen et al., 2018a; Mes- 

aoud et al., 2016 ), the adversary may need to reach an asset deep

ithin the defender’s network. This would require multiple steps 

nvolving reconnaissance, intrusion, lateral movement through a 

etwork, and so on. However, some attacks can involve just a sin- 

le step. For example, a spear phishing attack in which the vic- 

im unwittingly provides confidential information or even transfers 

oney. In this paper, we describe the adversary’s attack steps us- 

ng the MITRE ATT&CK Matrix for Enterprise 2 which captures com- 

on adversarial tactics based on real-world observations. 

Attacks that involve multiple steps can be thwarted if the de- 

ender identifies or blocks the attack early on. The more progress 

hat an adversary makes, the harder it is for the defender to miti- 

ate it. For example, it is better to stop a campaign during the ini-

ial intrusion phase than during the lateral movement phase where 

n unknown number of devices in the network have been com- 

romised. This concept is referred to as the cyber kill chain . From 

n offensive perspective, the adversary will want to shorten and 

bscure the kill chain to be as efficient and covert as possible. In 

articular, operation within a defender’s network usually requires 

he attacker to operate through a remote connection or send com- 

ands to compromised devices (bots) from a command and con- 

rol server (C2). This generates presence in the defenders network 

hich can be detected over time. 

It is clear that some AI-capable threat agents will be able to 

erform more sophisticated AI attacks than others. For example, 

tate actors can potentially launch intelligent automated botnets 

here hacktivists will likely struggle in accomplishing the same. 

owever, we have observed over the years that AI has become in- 

reasingly accessible, even to novice users. For example, there are 

 wide variety of open source deepfakes technologies online which 

re plug and play 3 . Therefore, the sophistication gap between cer- 

ain threat agents may close over time as the availability of AI 

echnology increases. 

.3.3. New threats 

AI-capable adversaries have new abilites over conventional cy- 

er adversaries. These abilities give attackers the means to novel 

cts of sabotage, espionage and theft of intellectual property (IP): 
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Sabotage. An adversary can use its knowledge to cause damage 

to an organization in ways that weren’t possible before. This 

is because AI-based adversaries can use (1) adversarial ma- 

chine learning, (2) generative AI, and (3) deep learning for 

software analysis. 

With adversarial machine learning, an attacker can target 

the organization’s ML products and solutions. For example, 

they can poison datasets to harm an ML model’s perfor- 

mance or plant a backdoor in a model for later exploita- 

tion. More examples include, the ability to evade detection 

in surveillance ( Sharif et al., 2016 ) and affect forecasts mod- 

els (e.g., finance Goldblum et al., 2021 , energy Chen et al., 

2019 , etc.) With generative AI, an attacker can add or modify 

evidence in a realistic manner. Examples include the modi- 

fication of surveillance footage to include or omit evidence 

( Leetaru, 2019 ), the tampering of medical scans to harm pa- 

tients ( Mirsky et al., 2019 ), and the manipulation of financial 

records to perform fraud ( Schreyer et al., 2019 ). Finally, with 

recent advances in deep learning, attackers can efficiently 

and effectively locate vulnerabilities in both source code ( Li 

et al., 2021; 2018 ) and compiled code ( Jiang et al., 2019; 

Wang et al., 2020b; Xu et al., 2017a ). This enables attackers 

to locate new vulnerabilities for exploitation with minimal 

effort. 

Espionage. With AI, adversaries can spy on organizations in 

new ways using side-channel analysis and swarm intelli- 

gence. Side channels are signals emitted from a device that 

can be used to infer confidential information ( Lavaud et al., 

2021 ) In the past, side-channel attacks were mainly per- 

formed in labs using expensive electronics and analyti- 

cal processes. With AI, adversaries can now perform side- 

channel attacks on-site and extract information from chan- 

nels that are temporal, complex, and multi-modal. For ex- 

ample, a compromised smartphone can be used to au- 

tomatically collect and organize conversations as text us- 

ing speech-to-text (STT) algorithms, and sentiment analy- 

sis ( Abd El-Jawad et al., 2018 ). Attackers can also steal cre- 

dentials through acoustic and motion side channels ( Liu 

et al., 2015a; Shumailov et al., 2019 ). AI can also be used 

to extract latent information from encrypted web traffic 

( Monaco, 2019 ), and track users through the organization’s 

social media ( Malhotra et al., 2012 ). Finally, by using swarm 

intelligence-based malware ( Zelinka et al., 2018 ), attackers 

can minimize the number of communications that they have 

to make to maintain and control and progress the attack. 

Doing so makes it harder for the organization to detect 

the attacker’s presence (i.e., less anomalous outbound traf- 

fic) and to remove the malware after blocking the attacker’s 

communication lines. 

IP Theft. An AI-capable adversary can extract IP from organiza- 

tions in new ways. For example, ML models can be stolen 

from purchased software products, or from cloud services 

querying the models with crafted inputs ( Jia et al., 2021; 

Juuti et al., 2019 ). Similar attacks can be performed to steal 

the model’s training data ( Haim et al., 2022; Hidano et al., 

2017 ). Obtaining this IP can help an adversary evade or con- 

trol these models whether they’re deployed in the organi- 

zation or another provider. Another example is AI-based re- 

verse engineering, where compiled software is lifted into 

higher levels of code so that the algorithms and logic can 

be understood and stolen ( Alrabaee et al., 2021 ). 

.3.4. OAI attack capabilities 

Using the literature review (details later in Section 3 ), we 

rouped the papers according to the offensive capability they pro- 

ide. Doing so revealed 32 offensive AI capabilities (OAC) which di- 

D Fou
nd

ati
on

https://attack.mitre.org/matrices/enterprise/
https://github.com/datamllab/awesome-deepfakes-materials


Y. Mirsky, A. Demontis, J. Kotak et al. Computers & Security 124 (2023) 103006 

Fig. 1. The 32 offensive AI capabilities (OAC) identified in our literature review, mapped to the MITRE enterprise ATT&CK model. An edge indicates that the OAC directly 

helps the attacker achieve the indicated attack step. 
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ectly improve the adversary’s ability to achieve attack steps (e.g., 

mpersonation, user tracking, etc). We then grouped the OACs into 

ategories according to their offensive activity (e.g., social engi- 

eering). Finally, we used real use cases reported in the news and 

y MITRE to validate the OACs and verify that none were missed. 

The seven OAC categories were: (1) automation, (2) campaign 

esilience, (3) credential theft, (4) exploit development, (5) infor- 

ation gathering, (6) social engineering, and (7) stealth. These cat- 

gories capture the main intent of the adversary reflecting the mo- 

ivators introduced in Section 2.3.1 . Therefore, these categories are 

on-exclusive (e.g., automating intelligence gathering involves ca- 

abilities from both ‘automation’ and ’information gathering’). 

In Fig. 1 , we present the OACs and map their influence on the 

yber kill chain (the MITRE enterprise ATT&CK model). An edge in 

he figure means that the indicated OAC improves the attacker’s 

bility to achieve the given attack step. These edges were obtained 

y (1) observing real cases reported by MITRE and academic ar- 

icles and (2) mapping the cases and articles to their respective 

ACs and their impact on the cyber kill chain. From the figure, we 

an see that offensive AI im pacts every aspect of the attack model. 

ater in Section 3 we will discuss each of these 32 OACs in greater

etail. 

These capabilities are materialized in one of two ways: 

I-based tools are programs that perform a specific task in the 

adversary’s arsenal. For example, a tool for in- 

telligently predicting passwords ( Garg and Ahuja, 

2019; Hitaj et al., 2019 ), obfuscating malware code 

( Datta, 2020 ), traffic shaping for evasion ( Han et al., 

2020; Li et al., 2019a; Novo and Morla, 2020 ), pup- 

peting a persona ( Mirsky and Lee, 2021 ), and so on. 

These tools are typically in the form of a machine 

learning model. 

I-driven bots are autonomous bots that can perform one or more 

attack steps without human intervention, or coordi- 

Isr
ael

-U
S BI
6 
nate with other bots to efficiently reach their goal. 

These bots may use a combination of swarm intel- 

ligence ( Castiglione et al., 2014 ) and machine learn- 

ing to operate. 

. Literature review 

In Section 2.3.4 we presented the 32 offensive AI capabilities. 

e will now present our literature review of the OACs in order 

f their 7 categories: automation, campaign resilience, credential 

heft, exploit development, information gathering, social engineer- 

ng, and stealth. 

Methodology. To perform our literature review, we used the 

MITRE ATT&CK 

4 matrix as a guide. This matrix lists the com- 

mon tactics (or attack steps) that an adversary performs 

when attacking an organization, from planning and recon- 

naissance leading to the final goal of exploitation. We di- 

vided up the work among five different academic work- 

groups from different international institutions. Each work- 

group was assigned a set of tactics from the MITRE ATT&CK 

matrix, based on their expertise. During the survey, the 

workgroups were asked to evaluate how AI has been and 

can be used by an attacker to improve an attacker’s tactics 

and techniques. Finally, the workgroups cross inspected each 

other’s content to ensure correctness and completeness. 

To identify potential articles and sources to include in our liter- 

ture review, we selected articles written in the English language 

nd published in peer-reviewed international conference proceed- 

ngs and journals on the topics of cybersecurity and AI from 1999. 

s for AI topics, we also included publicly-accessible preprint pub- 

ications as well since they are well known to be the source of 

D
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R

he latest advances from key researchers. When searching for at- 

acks which involve AI, we used variations of both ‘AI’ and ‘ma- 

hine learning’ as keywords. The selection process resulted in 225 

cientific papers, from which we performed our literature review. 

.1. Automation 

The ability to automate complex tasks gives adversaries a 

ands-off approach to accomplishing attack steps. This not only 

educes effort but also increases the adversary’s flexibility and en- 

bles larger campaigns that are less dependent on C2 signals. At- 

ack automation takes form of either (1) tools which can perform 

omplex tasks using AI (e.g., clone voices, suggest a target) or (2) 

oftware (bots) which can operate autonomously to complete an 

ntire attack step with our human intervention (e.g., a bot/malware 

hich propagates on its own by making decisions based on the en- 

ironment or cooperatively in communication with other bots). 

.1.1. Attack adaptation 

Adversaries can use AI to help adapt their malware and attack 

ffort s to unknown environments and find their intended targets. 

or example, identifying a system ( Our, 2020 ) before attempting 

n exploit to increase the chances of success and avoid detection. 

n Black Hat’18, IBM researchers showed how malware can trig- 

er itself using DL by identifying a target’s machine by analyzing 

he victim’s face, voice, and other attributes. With models such as 

ecision trees, malware can locate and identify assets via complex 

ules like ( Leong et al., 2019; Lunghi et al., 2017 ). Instead of trans-

erring screenshots ( Arsene, 2020; Brumaghin et al., 2018; Mueller, 

018; Zhang, 2018 ) DL can be used onsite to extract critical infor- 

ation. 

.1.2. Attack coordination 

Cooperative bots can use AI to find the best times and targets 

o attack. For example, swarm intelligence ( Beni, 2020 ) is the study 

f autonomous coordination among bots in a decentralized man- 

er. Researchers have proposed that botnets can use swarm in- 

elligence as well. In Zelinka et al. (2018) the authors discuss a 

ypothetical swarm malware and in Truong et al. (2019) the au- 

hors propose another which uses DL to trigger attacks. AI bots can 

lso communicate information on asset locations to fulfill attacks 

e.g., send a stolen credential or relevant exploit to a compromised 

achine). 

.1.3. Next hop targeting 

During lateral movement, the adversary must select the next 

sset to scan or attack. Choosing poorly may prolong the at- 

ack and risk detection by the defenders. For example, consider 

 browser like Firefox which has 4325 key-value pairs denoting 

he individual configurations. Only some inter-plays of these con- 

gurations are vulnerable ( Chen et al., 2014; Otsuka et al., 2015 ). 

einforcement learning can be used to train a detection model 

hich can identify the best browser to target. As for planning 

ultiple steps, a strategy can be formed by using reinforcement 

earning on Petri nets ( Bland et al., 2020 ) where attackers and de-

enders are modeled as competing players. Another approach is to 

se DL ( Wu et al., 2021; Yousefi et al., 2018 ) to explore “attack

raphs” Ou et al. (2005) that contain the target’s network struc- 

ure and the vulnerabilities. Notably, the Q-learning algorithms 

ave enabled the approach to work on large-scale enterprise net- 

orks ( Matta et al., 2019 ). 

.1.4. Phishing campaigns 

Phishing campaigns involve sending the same emails or robo- 

hone calls in mass. When someone falls prey and responds, the 

dversary takes over the conversation. These campaigns can be 
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ully automated through AI like Google’s assistant which can make 

hone calls on your behalf ( Leviathan and Matias, 2018; Rebryk 

nd Beliaev, 2020; Singh and Thakur, 2020 ). Furthermore, adver- 

aries can increase their success through mass spear phishing cam- 

aigns powered with deepfakes, where (1) a bot calls a colleague 

f the victim (found via social media), (2) clones his/her voice with 

 seconds of audio ( Jia et al., 2018 ), and then (3) calls the victim

n the colleague’s voice to exploit their trust. 

.1.5. Point of entry detection 

The adversary can use AI to identify and select the 

est attack vector for an initial infection. For example, in 

eslie et al. (2019) statistical models on an organization’s at- 

ributes were used to predict the number of intrusions it receives. 

he adversary can train a model on similar information to select 

he weakest organizations (low-hanging fruits) and the strongest 

ttack vectors. 

.1.6. Record tampering 

An adversary may use AI to tamper with records as part of 

heir end goal. For example, ML can be used to impact busi- 

ess decisions with synthetic data ( Kumar et al., 2018 ), to ob- 

truct justice by tampering evidence ( Leetaru, 2019 ), to perform 

raud ( Schreyer et al., 2019 ) or to modify medical or satellite im- 

gery ( Mirsky et al., 2019 ). As shown in Mirsky et al. (2019) , DL-

ampered records can fool human observers and can be accom- 

lished autonomously onsite. 

.2. Campaign resilience 

In a campaign, adversaries try to ensure that their infrastruc- 

ure and tools have a long life. Doing so helps maintain a foothold 

n the organization and enables the reuse of tools and exploits for 

uture and parallel campaigns. AI can be used to improve campaign 

esilience through planning, persistence, obfuscation, and detection 

f virtualization to avoid dynamic analysis. 

.2.1. Campaign planning 

Some attacks require careful planning long before the attack 

ampaign to ensure that all of the attacker’s tools and resources 

re obtainable. ML-based cost-benefit analysis tools, such as in 

anning et al. (2018) , may be used to identify which tools should 

e developed and how the attack infrastructure should be laid 

ut (e.g., C2 servers, staging areas, etc). It could also be used to 

elp identify other organizations that can be used as beach heads 

 Krebs, 2014 ). Moreover, ML can be used to plan a digital twin

 Bitton et al., 2018; Fuller et al., 2020 ) of the victim’s network 

based on information from reconnaissance) to be created offsite 

or tuning AI models and developing malware. 

.2.2. Persistent access 

An adversary can have bots establish multiple back doors 

er host and coordinate reinfection efforts among a swarm 

 Zelinka et al., 2018 ). Doing so achieves a foothold in an organi-

ation by slowing down the effort to purge the campaign. To avoid 

etection in payloads deployed during boot, the adversary can use 

 two-step payload that uses ML to identify when to deploy the 

alware and avoid detection ( Anderson, 2017; Fang et al., 2019 ). 

oreover, a USB-sized neural compute stick 5 can be planted by an 

nsider to enable covert and autonomous onsite DL operations. 
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.2.3. Malware obfuscation 

ML models such as GANs can be used to obscure a malware’s 

ntent from an analyst. Doing so can enable the reuse of the mal- 

are, hide the attacker’s intents and infrastructure, and prolong an 

ttack campaign. The concept is to take an existing piece of soft- 

are and emit another piece that is functionally equivalent (similar 

o translation in NLP). For example, DeepObfusCode ( Datta, 2020 ) 

ses recurrent neural networks (RNN) to generate ciphered code. 

lternatively, backdoors can be planted in open source projects and 

idden using similar manners ( Pasandi et al., 2019 ). 

.2.4. Virtualization detection 

To avoid dynamic analysis and detection in sandboxes, an ad- 

ersary may try to have the malware detect the sandbox before 

riggering. The malware could use ML to detect a virtual envi- 

onment by measuring system timing (e.g., like in Perianin et al., 

020 ) and other system properties. 

.3. Credential theft 

Although a system may be secure in terms of access control, 

ide channels can be exploited with ML to obtain a user’s creden- 

ials and vulnerabilities in AI systems can be used to avoid biomet- 

ic security. 

.3.1. Biometric spoofing 

Biometric security is used for access to terminals (such as 

martphones) and for performing automated surveillance ( Ding 

t al., 2018; Mozur, 2018; Wang et al., 2017 ). Recent works have 

hown how AI can generate “Master Prints” which are deepfakes of 

ngerprints that can open nearly any partial print scanner (such as 

n a smartphone) ( Bontrager et al., 2018 ). Face recognition systems 

an be fooled or evaded with the use of adversarial samples. For 

xample, in Sharif et al. (2016) where the authors generated col- 

rful glasses that alter the perceived identity. Moreover, ‘sponge’ 

amples ( Shumailov et al., 2021 ) can be used to slow down a

urveillance camera until it is unresponsive or out of batteries 

when remote). Voice authentication can also be evaded through 

dversarial samples, spoofed voice ( Wang et al., 2020a ), and by 

loning the target’s voice with deep learning ( Wang et al., 2020a ). 

.3.2. Cache mining 

Information on credentials can be found in a system’s cache and 

og dumps, but a large amount of data makes finding it a difficult 

ask. However, the authors of ( Wang et al., 2019a ) showed how ML

ould be used to identify credentials in cache dumps from graphic 

ibraries. Another example is the work of ( Calzavara et al., 2015 )

here an ML system was used to identify cookies containing ses- 

ion information. 

.3.3. Implicit key logging 

Over the last few years, researchers have shown how AI can be 

sed as an implicit key-logger by sensing side-channel information 

rom a physical environment. The side channels come in one or a 

ombination of the following aspects: 

Motion. When tapping on a phone screen or typing on a key- 

board, the device and nearby surfaces move and vibrate. 

Malware can use the smartphone’s motion sensors to deci- 

pher the touch strokes on the phone ( Hussain et al., 2016; 

Javed et al., 2020 ) and keystrokes on nearby keyboards 

( Marquardt et al., 2011 ). Wearable devices can be exploited 

in a similar way as well ( Liu et al., 2015b; Maiti et al., 2018 ).

Audio. Researchers have shown that, when pressed, each key 

gives its own unique sound which can be used to infer what 

is being typed ( Compagno et al., 2017; Liu et al., 2015a ).
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The timing between keystrokes is also a revealing factor due 

to the structure of the language and keyboard layout. Sim- 

ilar approaches have also been shown for inferring touches 

on smartphones ( Lu et al., 2019; Shumailov et al., 2019; Yu 

et al., 2019 ). 

Video. In some cases, a nearby smartphone or compromised 

surveillance camera can be used to observe keystrokes, even 

when the surface is obscured. For example, via eye move- 

ments ( Chen et al., 2018b; Wang et al., 2019c; 2018 ), device 

motion ( Sun et al., 2016 ), and hand motion ( Balagani et al., 

2018; Lim et al., 2020 ). 

.3.4. Password guessing 

Humans tend to select passwords with low entropy or with per- 

onal information such as dates. GANs can be used to intelligently 

rute-force passwords by learning from leaked password databases 

 Hitaj et al., 2019 ). Researchers have improved on this approach 

y using RNNs in the generation process ( Nam et al., 2020 ). How-

ver, the authors of ( Garg and Ahuja, 2019 ) found that models like 

 Hitaj et al., 2019 ) do not work well on Russian passwords. Instead, 

dversaries may pass the GAN personal information on the user to 

mprove the performance ( Seymour and Tully, 2018 ). 

.3.5. Side channel mining 

ML algorithms are adept at extracting latent patterns in noisy 

ata. Adversaries can leverage ML to extract secrets from side 

hannels emitted from cryptographic algorithms. This has been ac- 

omplished on a variety of side channels including power con- 

umption ( Kocher et al., 1999; Lerman et al., 2014 ), electromagnetic 

manations ( Gandolfi et al., 2001 ), processing time ( Brumley and 

oneh, 2005 ), cache hits/misses ( Perianin et al., 2020 ). In general, 

L can be used to mine nearly any kind of side channel ( Cagli

t al., 2017; Heuser et al., 2016; Lerman et al., 2013; Maghrebi 

t al., 2016; Perin et al., 2021; Picek et al., 2019; 2018; Weissbart 

t al., 2019 ). For example, credentials can be extracted from the 

iming of network traffic ( Song et al., 2001 ). 

.4. Exploit development 

Adversaries work hard to understand the content and inner 

orkings of compiled software to (1) steal intellectual property, (2) 

hare trade secrets, (3) and identify vulnerabilities that they can 

xploit. 

.4.1. Reverse engineering 

While interpreting compiled code, an adversary can use ML to 

elp identify functions and behaviors and guide the reversal pro- 

ess. For example, binary code similarity can be used to identify 

ell-known or reused behaviors ( Bao et al., 2014; Ding et al., 2019; 

uan et al., 2020; Liu et al., 2018; Shin et al., 2015; Xu et al.,

017b; Ye et al., 2020 ) and autoencoder networks can be used 

o segment and identify behaviors in code, similar to the work 

f ( Deepreflect, 2021 ). Furthermore, DL can potentially be used to 

ift compiled code up to a higher-level representation using graph 

ransformation networks ( Yun et al., 2019 ), similar to semantic 

nalysis in language processing. Protocols and state machines can 

lso be reversed using ML, for example, CAN bus data in vehicles 

 Huybrechts et al., 2017 ), network protocols ( Li et al., 2015 ), and

ommands ( Bossert et al., 2014; Wang et al., 2011 ). 

.4.2. Vulnerability detection 

There are a wide variety of software vulnerability detection 

echniques which can be broken down into static and dynamic ap- 

roaches: 
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Static. For open source applications and libraries, the attacker 

can use ML tools for detecting known types of vulnerabil- 

ities in source code ( Chakraborty et al., 2020; Feng et al., 

2016; Li et al., 2019c; 2018; Mokhov et al., 2014 ). If its a

commercial product (compiled as a binary), then methods 

such as ( Deepreflect, 2021 ) can be used to identify vulner- 

abilities by comparing parts of the program’s control flow 

graph to known vulnerabilities. 

Dynamic. ML can also be used to perform guided input 

‘fuzzing’ which can reach buggy code faster ( Atlidakis et al., 

2020; Cheng et al., 2019; Li et al., 2020a; Lin et al., 2020; 

She et al., 2020; 2019; Wang et al., 2020b ). Many works have 

also shown how AI can mitigate the issue of symbolic exe- 

cution’s massive state space ( Janota, 2018; Jiang et al., 2019; 

Kurin et al., 2019; Liang et al., 2018; Samulowitz and Memi- 

sevic, 2007 ). 

.5. Information gathering 

AI scales well and is very good at data mining and language 

rocessing. These capabilities can be used by an adversary to col- 

ect and distill actionable intel for a campaign. 

.5.1. Mining OSINT 

In general, there are three ways in which AI can improve an 

dversary’s OSINT. 

Stealth. The adversary can use AI to camouflage its probe traf- 

fic to resemble benign services like Google’s web crawler 

( Cohen et al., 2020 ). Unlike heavy tools like Metagoofil 

( Martorella, 2020 ), ML can be used to minimize interactions 

by prioritizing sites and data elements ( Ghazi et al., 2018; 

Guo et al., 2019 ). 

Gathering. Network structure and elements can be identi- 

fied using cluster analysis or graph-based anomaly detec- 

tion ( Akoglu et al., 2015 ). Credentials and asset information 

can be found using methods like reinforcement learning on 

other organizations ( Schwartz and Kurniawati, 2019 ). Finally, 

personnel structure can be extracted from social media us- 

ing NLP-based web scrappers like Oxylabs ( Oxylabs, 2021 ). 

Extraction. Techniques like NLP can be used to translate foreign 

documents ( Dabre et al., 2020 ), identify relevant documents 

( Evangelista et al., 2020; Nasar et al., 2019 ), extract relevant 

information from online sources ( Ilin, 2020; Telegram, 2020 ), 

and locate valid identifiers ( Malhotra et al., 2012 ). 

.5.2. Model theft 

An adversary may want to steal an AI model to (1) obtain it 

s intellectual property, (2) extract information about members 

f its training set ( Hidano et al., 2017; Narayanan and Shmatikov, 

008; Shokri et al., 2017 ), or (3) use it to perform a white-box at-

ack against an organization. As described in Section 2.2.2 , if the 

odel can be queried (e.g., model as a service -MAAS), then its 

arameters ( Jia et al., 2021; Juuti et al., 2019 ) and hyperparameters 

 Wang and Gong, 2018 ) can be copied by observing the model’s re-

ponses. This can also be done through side-channel ( Batina et al., 

019 ) or hardware-level analysis ( Breier et al., 2020 ). 

.5.3. Spying 

DL is extremely good at processing audio and video and, there- 

ore, can be used in spyware. For example, a compromised smart- 

hone can map an office by (1) modeling each room with ultra- 

onic echo responses ( Zhou et al., 2017 ), (2) using object recog- 

ition ( Jiao et al., 2019 ) to obtain physical penetration info (con- 

rol terminals, locks, guards, etc.), and (3) automatically mine rele- 

ant information from overheard conversations ( Nasar et al., 2019; 
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en et al., 2019 ). ML can also be used to analyze encrypted traf- 

c. For example it can extract transcripts from encrypted voice 

alls ( White et al., 2011 ), identify applications ( Al-Hababi and Tok- 

oz, 2020 ), and reveal internet searches ( Monaco, 2019 ). 

.6. Social engineering 

The weakest links in an organization’s security are often its hu- 

ans. Adversaries have long targeted humans by exploiting their 

motions and trust. AI provides adversaries with enhanced capa- 

ilities to exploit humans further. 

.6.1. Impersonation (Identity theft) 

An adversary may want to impersonate someone for a scam, 

lackmail attempt, defamation attack, or to perform a spear phish- 

ng attack with their identity. This can be accomplished using 

eepfake technologies, which enable the adversary to reenact 

puppet) the voice and face of a victim, or alter the existing me- 

ia content of a victim ( Mirsky and Lee, 2021 ). Recently, the tech- 

ology has advanced to the state where reenactment can be per- 

ormed in real-time ( Nirkin et al., 2019 ), and training only requires 

 few images ( Siarohin et al., 2019 ) or seconds of audio ( Jia et al.,

018 ) from the victim. For high-quality deepfakes, large amounts of 

udio/video data are still needed. However, when put under pres- 

ure, a victim may trust a deepfake even if it has a few abnor- 

alities (e.g., in a phone call) ( Workman, 2008 ). Moreover, the au- 

io/video data may be an end goal inside the organization (e.g., 

ustomer data). 

.6.2. Persona building 

Adversaries build fake personas on online social networks (OSN) 

o connect with their targets ( Hao, 2019 ). To evade fake profile 

etectors, a profile can be cloned and slightly altered using AI 

 Salminen et al., 2019; 2020; Spiliotopoulos et al., 2020 ) so that 

hey will appear different yet reflect the same personality. The ad- 

ersary can then use a number of AI techniques to alter or mask 

he photos from detection ( Li et al., 2019b; Shan et al., 2020; 

haoanlu, 2020; Sun et al., 2018 ). To build connections, a link pre- 

iction model can be used to maximize the acceptance rate ( Kong 

nd Tong, 2020; Wang et al., 2019b ) and a DL chatbot can be used

o maintain the conversations ( Roller et al., 2021 ). 

.6.3. Spear phishing 

Call-based spear phishing attacks can be enhanced using real- 

ime deepfakes of someone the victim trusts. For example, this 

ccurred in 2019 when a CEO was scammed out of $240k 

 Stupp, 2020 ). For text-based phishing, tweets ( zerofox, 2020 ) and 

mails ( Das and Verma, 2019; Seymour and Tully, 2016; 2018 ) can 

e generated to attract a specific victim, or style transfer tech- 

iques can be used to mimic a colleague ( Fu et al., 2018; Yang 

t al., 2018 ). 

.6.4. Target selection 

An adversary can use AI to identify victims in the organiza- 

ion who are the most susceptible to social engineering attacks 

 Abid et al., 2018 ). It is also possible to build a model based on

he target’s social attributes (conversations, attended events, etc.) 

 Bitton et al., 2020; Solomon et al., 2022 ). Moreover, sentiment 

nalysis can be used to find disgruntled employees to be recruited 

s insiders ( Abd El-Jawad et al., 2018; Dhaoui et al., 2017; Ghiassi 

nd Lee, 2018; Panagiotou et al., 2019; Rathi et al., 2018 ). 

.6.5. Tracking 

To study members of an organization, adversaries may track 

he member’s activities. With ML, an adversary can trace person- 
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el across different social media sites by content ( Malhotra et al., 

012 ) and through facial recognition ( Black, 2018 ). ML models 

an also be used on OSN content to track a member’s location 

 Pellet et al., 2019 ). Finally, ML can also be used to discover hidden

usiness relationships ( Ma et al., 2009; Zhang et al., 2012 ) from 

he news and OSNs as well ( Kumar and Rathore, 2016; Zhang and 

hen, 2018 ). 

.7. Stealth 

In multi-step attacks, covert operations are necessary to ensure 

uccess. An adversary can either use or abuse AI to evade detec- 

ion. 

.7.1. Covering tracks 

To hide traces of the adversary’s presence, anomaly detection 

an be performed on the logs to remove abnormal entries ( Cao 

t al., 2017; Debnath et al., 2018 ). CryptoNets ( Gilad-Bachrach et al., 

016 ) can also be used to hide malware logs and onsite train- 

ng data for later use. To avoid detection onsite, trojans can be 

lanted in DL intrusion detection systems (IDS) in a supply chain 

ttack at both the hardware ( Breier et al., 2018a; 2018b ) and soft-

are ( Li et al., 2022; Liu et al., 2017 ) levels. DL hardware tro-

ans can use adversarial machine learning to avoid being detected 

 Hasegawa et al., 2020 ). 

.7.2. Evading HIDS (Malware detectors) 

The struggle between security analysts and malware develop- 

rs is a never-ending battle, with the malware quickly evolving 

nd defeating detectors. In general, state-of-the-art detectors are 

ulnerable to evasion ( Demontis et al., 2019b; Kolosnjaji et al., 

018; Maiorca et al., 2020 ). For example, adversaries can evade 

n ML-based HIDS that performs dynamic analysis by splitting 

he malware’s code into small components executed by differ- 

nt processes ( Ispoglou and Payer, 2016 ). They can also evade 

L-based detectors that perform static analysis by adding bytes 

o the executable ( Suciu et al., 2019 ) or code that does not af-

ect the malware behavior ( Anderson et al., 2018; Demetrio et al., 

021; Fang et al., 2019; Pierazzi et al., 2020; Zhiyang et al., 2019 ).

odifying the malware without breaking its malicious function- 

lity is not easy. Attackers may use AI explanation tools like 

IME ( Ribeiro et al., 2016 ) to understand which parts of malware 

re being recognized by the detector and change them manually. 

ools for evading ML-based detection can be found freely online. 6 

.7.3. Evading NIDS (Network intrusion detection systems) 

There are several ways an adversary can use AI to avoid de- 

ection while entering, traversing, and communicating over an or- 

anization’s network. Regarding URL-based NIDSs, attackers can 

void phishing detectors by generating URLs that do not match 

nown examples ( Bahnsen et al., 2018 ). Bots trying to contact 

heir C2 server can generate URLs that appear legitimate to hu- 

ans ( Peck et al., 2019 ), or that can evade malicious-URL detec- 

ors ( Sidi et al., 2020 ). To evade traffic-based NIDSs, adversaries 

an shape their traffic ( Han et al., 2020; Novo and Morla, 2020 )

r change their timing to hide it ( Sharon et al., 2021 ). 

.7.4. Evading insider detectors 

To avoid insider detection mechanisms, adversaries can mask 

heir operations using ML. For example, given one user’s creden- 

ials, they can use the information on the user’s role and the orga- 

ization’s structure to ensure that the operation performed looks 

egitimate ( Sutro, 2020 ). 
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.7.5. Evading email filter 

Many email services use machine learning to detect mali- 

ious emails. However, adversaries can use adversarial machine 

earning to evade detection ( Dalvi et al., 2004; Gao et al., 2018; 

owd and Meek, 20 05a; 20 05b ). Similarly, malicious documents at- 

ached to emails, containing malware, can evade detection as well 

e.g., Li et al., 2020b ). Finally, an adversary may send emails to be 

ntentionally detected so that they will be added to the defender’s 

raining set, as part of a poisoning attack ( Biggio et al., 2011 ). 

.7.6. Exfiltration 

Similar to evading NIDSs, adversaries must evade detection 

hen trying to exfiltrate data outside of the network. This can 

e accomplished by shaping traffic to match the outbound traf- 

c ( Li et al., 2019a ) or by encoding the traffic within a per-

issible channel like Facebook chat ( Rigaki and Garcia, 2018 ). 

o hide the transfer better, an adversary could use DL to com- 

ress Patel et al. (2019) and even encrypt ( Abadi and Ander- 

en, 2016 ) the data being exfiltrated. To minimize throughput, au- 

io and video media can be summarized to textual descriptions 

nsite with ML before exfiltration. Finally, if the network is air- 

apped (isolated from the Internet) ( Guri and Elovici, 2018 ) then 

L techniques can be used to hide data within side channels such 

s noise in audio ( Jiang et al., 2020 ). 

.7.7. Propagation & scanning 

For stealthy lateral movement, an adversary can configure their 

etri nets or attack graphs (see Section 3.1.3 ) to avoid assets and 

ubnets with certain IDSs and favor networks with more noise 

o hide in. Moreover, AI can be used to scan hosts and networks 

overtly by modeling its search patterns and network traffic ac- 

ording to locally observed patterns ( Li et al., 2019a ). 

. Panel survey & threat ranking 

In our literature review ( Section 3 ), we identified the potential 

ffensive AI capabilities (OAC) that an adversary could use to attack 

n organization. However, some OACs may be impractical, whereas 

thers may pose much larger threats. Therefore, we performed a 

anel survey to rank these threats and understand their impact on 

he cyber kill chain. 

.1. Survey setup 

We surveyed 35 experts in both subjects of AI and cybersecu- 

ity. To be included in the panel survey, a participant must (1) be 

ctively working in academia, industry or government and (1) have 

t least 2 years experience in both cybersecurity and AI. 

From the industry and government sectors, we had 19 partici- 

ants. Amoun then were a CISO of a large institution, a CTO and 

ounder of AI-based security companies, an AI ethics researcher 

rom a cybersecurity company, two research managers involved 

n cyber security AI projects, and seven researchers working in 

ybersecurity or AI-based cybersecurity. From academia, we had 

6 participants: 8 professors and 8 research scientists (Ph.D. and 

bove) with experience in both AI and cyber security. Some of 

ur participants were from MITRE, IBM Research, Microsoft, Air- 

us, Bosch (RBEI), Fujitsu Ltd., Hitachi Ltd., Huawei Technologies, 

ord Security, Institute for Infocomm Research (I2R), Google, Ro- 

ust Intelligence, Pluribus One, Ermes Cyber Security, Mandiant, 

iData, Purdue University, Georgia Institute of Technology, Mu- 

ich Research Center, University of Cagliari, University of Venice, 

ing’s College London, Technische Universität Braunschweig, and 

he Nanyang Technological University (NTU). The responses of the 

articipants have been anonymized and reflect their own personal 

iews and not the views of their employers. 
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The survey consisted of 204 questions that asked the partici- 

ants to (1) rate different aspects of each OAC, (2) give their opin- 

on on the utility of AI to the adversary in the cyber kill chain, and

3) give their opinion on the balance between the attacker and de- 

ender when both have AI. Prior to filling out the questionnaire, 

ll participants were given context of how offensive AI threatens 

rganisations. Prior to rating the aspects of an OAC, participants 

ere given one or more example instances of the OAC for clar- 

fication. The questions and the example instances can be found 

n the appendix. The survey was facilitated using a Google form 

nd it took the participants approximately 30–60 minutes each to 

omplete the form. The responses from the survey were used to 

roduce threat rankings and to gain insights into the threat of of- 

ensive AI to organizations. 

Only 35 individuals participated in the survey because AI- 

ybersecurity experts are very busy and hard to reach. However, 

iven the diversity of the participants, we believe that these re- 

ults still provide meaningful insights into the opinions and con- 

erns that members of academia and industry have on offensive 

I. 

.2. Threat ranking 

In this section, we measure and rank the various threats of an 

dversary which can utilize or exploit AI technologies to enhance 

heir attacks. For each OAC the participants were asked to rate four 

spects 7 in the range of 1–7 (low to high): 

Profit ( P ) : The amount of benefit that a threat agent gains by

using AI compared to using non-AI methods. For example, 

attack success, flexibility, coverage, attack automation, and 

persistence. Here profit assumes that the AI tool has already 

been implemented. 

Achievability ( A ) : How easy is it for the attacker to use AI for

this task considering that the adversary must implement, 

train, test, and deploy the AI. This measure also includes the 

monetary cost to the attacker. 

Defeatability ( D ) : How easy is it for the defender to detect or

prevent the AI-based attack. Here, a higher score is bad for 

the adversary (1 = hard to defeat, 7 = easy to defeat). 

Harm ( H ) : The amount of harm that an AI-capable adversary 

can inflict in terms of physical, physiological, or monetary 

damage (including effort put into mitigating the attack). 

We say that an adversary is motivated to perform an attack if 

here is high profit P and high achievability A . Moreover, if there 

s high P but low A or vice versa, some actors may be tempted to

ry anyways. Therefore, we model the motivation of using an OAC 

s M = 

1 
2 (P + A ) . However, just because there is motivation, it does

ot mean that there is a risk. If the AI attack can be easily detected

r prevented, then no amount of motivation will make the OAC a 

isk. Therefore, we model risk as R = 

M 

D where a low defeatability 

hard to prevent) increases R and a high defeatability (easy to pre- 

ent) lowers R . Risk can also be viewed as the likelihood of the at-

ack occurring, or the likelihood of attack success. Finally, to model 

hreat, we must consider the amount of harm done to the organi- 

ation. An OAC with high R but no consequences is less of a threat.

herefore, we model our threat score as 

 = H 

1 
2 
(P + A ) 

D 

= H 

M 

D 

= HR (1) 

efore computing T , we normalize P , A , D , and H from the range

–7 to 0–1. This way, a threat score greater than 1 indicates a sig- 

ificant threat because for these scores (1) the adversary will at- 

empt the attack ( M > D ), and (2) the level of harm will be greater

Isr
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han the ability to prevent the attack ( D M 

< H ≤ 1 ). We can also see

rom our model that as an adversary’s motivation increases over 

efeatability, the amount of harm deemed threatening decreases. 

his is intuitive because if an attack is easy to achieve and highly 

rofitable, then it will be performed more often. Therefore, even if 

t is less harmful, attacks will frequently occur so that the damage 

ill be higher in the long run. 

.2.1. OAC threat ranking 

In Fig. 2 we present the average P , A , D , and H scores for each

AC. In Fig. 3 we present the OACs ranked according to their threat 

core T , and contrast their risk scores R to their harm scores H. 

The results show that 19 of the OACs (60%) are considered to be 

ignificant threats (have a T > 1 ). In general, we observe that the 

op threats mostly relate to social engineering and malware de- 

elopment. The top three OACs are impersonation, spear phishing, 

nd model theft. These OACs have significantly larger threat scores 

han the others because they are (1) easy to achieve, (2) have high 

ayoffs, (3) are hard to prevent, and (4) cause the most harm (top 

eft of Fig. 2 ). Interestingly, the use of AI to run phishing cam- 

aigns is considered a large threat even though it has a relatively 

igh D score. We believe this is because, with AI, an adversary can 

oth increase the number and quality of phishing attacks. There- 

ore, even if 99% of the attempts fail, some will get through and 

ause the organization damage. The least significant threats were 

canning and cache mining which is perceived to have little benefit 

or the adversary because they pose a high risk of detection. Other 

ow-ranked threats include some on-site automation for propaga- 

ion, target selection, lateral movement, and covering tracks. 

.2.2. Industry vs academia 

In Fig. 4 we look at the average threat scores for each OAC 

ategory , and contrast the opinions of members from academia to 

hose from industry. 

In general, it seems that academia views AI as a more signif- 

cant threat to organizations than industry. One can argue that 

he discrepancy is because industry tends to be more practical 

nd grounded in the present, where academia considers potential 

hreats thus considering the future. For example, when looking at 

he threat scores from academia, all of the categories are consid- 

red significant threats ( T > 1 ). However, when looking at the in-

ustry’s responses, the categories of stealth, credential theft, and 

ampaign resilience are not. This may be because these concepts 

ave presented (proven) themselves less in the wild than the oth- 

rs. 

Regardless, both industry and academia seem to agree on the 

op three most threatening OAC categories: (1) social engineering, 

2) information gathering and (3) exploit development. This is be- 

ause, for these categories, the attacker benefits greatly from us- 

ng AI ( P ), can easy implement the relevant AI tools ( A ), the attack

auses considerable damage ( H), and there is little the defender 

an do to prevent them ( D ) (indicated in Fig. 2 ). For example, deep-

akes are easy to implement yet hard to detect in practice (e.g., in a 

hone call), and extracting private information from side channels 

nd online resources can be accomplished with little intervention. 

Surprisingly, it would appear that both academia and industry 

onsider the use of AI for stealth as the least threatening OAC cat- 

gory in general. Even though there has been a great deal of work 

howing how IDS models are vulnerable ( Novo and Morla, 2020; 

uciu et al., 2019 ), IDS evasion approaches were considered the 

econd most defeatable OAC after intelligent scanning. This may 

ave to do with the fact that the adversary cannot evaluate its AI- 

ased evasion techniques inside the actual network and thus risks 

etection. 

Overall, there were some disagreements between our partici- 

ants from industry and academia regarding the most threatening 
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Fig. 2. Survey results: the averaged and normalized opinion scores for each offensive AI capability (OAC) when used against an organization. The OACs are ordered according 

to their threat score, left to right, starting from the first row. 
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Fig. 3. Survey results: the offensive AI capabilities ranked according to their threat 

scores. 

O

3

1

Fig. 4. Survey results: the offensive AI capability categories ranked according to 

their average threat scores. The scores from industry and academia participants are 

also presented separately. 
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ACs. The top 10 most threatening OACs for organizations (out of 

2) were ranked as follows: 

Industry’s Perspective 

1. Impersonation 

2. Spear Phishing 

3. Phishing Campaigns 

4. Persona Building 

5. Vulnerability Detection 

6. Reverse Engineering 

7. H/NIDS Evasion 

8. Mining OSINT 

9. Password Guessing 

0. Attack Customization 

Academia’s Perspective 

1. Impersonation 

2. Biometric Spoofing 

3. Target Selection 

4. Spear Phishing 

5. Mining OSINT 

Isr
ael
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6. Vulnerability Detection 

7. Spying 

8. Persona Building 

9. Phishing Campaigns 

0. AI Model Theft 

Both industry and academia view impersonation as the great- 

st threat to organizations. This is understandable given recent 

vents where deepfakes were successfully used for impersonation 

nd fraud ( FBI, 2022; Fraudster, 2020; Navalny, 2021; Vincent, 

022 ). We note that our participants from academia view biomet- 

ic spoofing as the second largest threat, where our participants 

rom industry don’t even consider it in their top 10. We think this 

s because the latest research on this topic involves ML which can 

e evaded (e.g., Bontrager et al., 2018; Sharif et al., 2016 ). In con-

rast to the academics, our industry participants view this OAC as 

ess harmful to the organization and less profitable to the adver- 

ary, perhaps because biometric security is not a common defense 

sed in organization. Regardless, biometric spoofing is still con- 

idered the 4-th highest threat overall ( Fig. 3 ). Another insight is 

hat academia is more concerned about the use of ML for spy- 

are, target selection, and the theft of AI models than industry. 

his may be because these are topics which have long been dis- 

ussed in academia, but have yet to cause major disruptions in the 

eal-world. For industry, they are more concerned with the use of 

I for exploit development, defence evasion and social engineering, 

ikely because these are threats which are out of their control. 

.3. Impact on the cyber kill chain 

For each of the 14 MITRE ATT&CK steps, we asked the partici- 

ants whether they agree or disagree 8 to the following statements: 

1) It more beneficial for the attacker to use AI than conventional 

ethods in this attack step, and (2) AI benefits the attacker more 

han AI benefits the defender. The objective of these questions 

ere to identify how AI impacts the kill chain and whether AI 

orms any asymmetry between the attacker and defender. 

In Fig. 5 we present the mean opinion scores along with their 

tandard deviations. Overall, our participants felt that AI enhances 

he adversary’s ability to traverse the kill chain. In particular, we 

bserve that adversary benefits considerably from AI during the 

rst three steps. One explanation is that these attacks are main- 

ained offsite and thus are easier to develop and have less risk. 

oreover, we understand from the results that there is a general 

eeling that defenders do not have a good way to prevent adversar- 

al machine learning attacks. Therefore, AI not only improves de- 

ense evasion but also gives the attacker a considerable advantage 

ver the defender in this regard. 
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Fig. 5. Survey results: Mean opinion scores on whether (1) it is more beneficial for 

the adversary to use AI over conventional methods, and (2) AI benefits attackers 

more than AI benefits defenders. The scores range from -3 to +3. 
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Our participants also felt that an adversary with AI has a some- 

hat greater advantage over a defender with AI for most attack 

teps. In particular, the defender cannot effectively utilize AI to 

revent reconnaissance except for mitigating a few kinds of social 

ngineering attacks. Moreover, the adversary has many new uses 

or AI during the impact step, such as the tampering of records, 

hich the defender does not. However, the participants felt that 

he defender has an advantage when using AI to detect execution, 

ersistence, and privilege escalation. This is understandable since 

he defender can train and evaluate models onsite whereas the at- 

acker cannot. 

. Findings & discussion 

In this section, we (1) present our main findings from the lit- 

rature review and panel survey and (2) share our insights on our 

ndings and discuss the road ahead. 

.1. Main findings 

From the Literature Review. 

• We first observed that there are three primary motivations 

for an adversary to use AI: coverage, speed, and success (See 

Section 2.3.1 ). 

• Offensive AI introduces new threats to organizations. A few 

examples include the poisoning of machine learning models 

( Biggio et al., 2012; Gu et al., 2017 ), theft of credentials through

side-channel analysis ( Song et al., 2001 ), and the targeting of 

proprietary training datasets ( Hidano et al., 2017; Juuti et al., 

2019 ). 

• Adversaries can employ 32 offensive AI capabilities against or- 

ganizations. These are categorized into seven groups: (1) attack 

automation, (2) campaign resilience, (3) credential theft, (4) ex- 

ploit development, (5) information gathering, (6) social engi- 

neering, and (7) stealth. 

• Defense solutions, such as AI methods for vulnerability detec- 

tion ( Lin et al., 2020 ), pen-testing ( zerofox, 2020 ), and creden-

tial leakage detection ( Calzavara et al., 2015 ) can be weaponized 

by adversaries for malicious purposes. 

rom the Panel Survey. 

• The top three most threatening categories of offensive AI capa- 

bilities against organizations are (1) social engineering, (2) in- 

formation gathering and (3) exploit development. 

• 19 of the 32 offensive AI capabilities pose significant threats to 

organizations. 
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• Both industry and academia ranked the threat of using AI for 

impersonation (e.g., real-time deepfakes to perpetrate phishing 

and other social engineering attacks) as the highest threat. 

• Aside from social engineering aspects, industry and academia 

are not aligned on the top threats of offensive AI against orga- 

nizations. Industry members are most concerned with AI being 

used for reverse engineering, with a focus on the loss of intel- 

lectual property and vulnerability detection. Academics, on the 

other hand, are most concerned about AI being used to perform 

biometric spoofing (e.g., evading fingerprint and facial recogni- 

tion) and attack automation. 

• Although the evasion of intrusion detection systems (e.g., 

with adversarial machine learning) is classified as a significant 

threat, its only ranks number 12 on the list. This may be due 

to the challenge of the adversary creating effective black box 

attacks in an unknown IT environment. 

• AI impacts the start of the cyber kill chain the most (i.e., re- 

connaissance, resource development, and initial access). This is 

because the adversary has more information available and can 

use this information to refine and evaluate the attacks offsite 

before proceeding. 

• Because AI can be used to automate processes, adversaries may 

shift from having a few slow covert campaigns to having nu- 

merous fast-paced campaigns to overwhelm defenders and in- 

crease their chances of success. 

.2. Insights, observations, & limitations 

Top Threats. It is understandable why the highest-ranked 

hreats to organizations relate to social engineering attacks and 

oftware analysis (vulnerability detection and reverse engineer- 

ng). It is because these attacks are out of the defender’s con- 

rol. Humans have highly evolved and efficient perception and 

ecision-making abilities. These rely on mental models formed 

hroughout our lives. These mental models (like AI models) can 

e exploited by presenting information in ways that deceive 

hem ( Hollnagel et al., 2006; Woods and Hollnagel, 2006 ). With 

eepfakes, social engineering attacks have become even more fre- 

uent ( Mirsky and Lee, 2021 ). The same holds for software anal- 

sis where ML has been shown to be effective at analyzing soft- 

are (complex structural data) whether it is source code or a com- 

iled binary ( Alrabaee et al., 2021; Li et al., 2021; Ye et al., 2020 ).

s mentioned earlier, we believe the reason academia is the most 

oncerned with biometrics is that it almost exclusively uses ML, 

nd academia is well aware of ML’s flaws. Industry members may 

iew these attacks as less threatening because physical infiltration 

s not a top security threat to organizations ( Software, 2021 ). This 

ight explain why they perceive AI attacks on their software and 

ersonnel as the greatest threats. 

The Near Future. Over the next few years, we believe that there 

ill be an increase in offensive AI incidents, but only at the front 

nd back of the attack model (recon., resource development, and 

mpact – such as record tampering). This is because currently, AI 

annot effectively learn new tasks on its own. Therefore, we aren’t 

ikely to see botnets that can autonomously and dynamically inter- 

ct with a diverse set of complex systems (like an organization’s 

etwork) in the near future. Therefore, since modern adversaries 

ave limited information on the organizations’ networks, they are 

estricted to attacks where the data collection, model development, 

raining, and evaluation occur offsite. In particular, we note that DL 

odels are large and require a considerable amount of resources 

o run. This makes them easy to detect when transferred into the 

etwork or executed onsite. However, the model’s footprint might 

ecome less anomalous over time as DL proliferates. In the near 

uture, we also expect that phishing campaigns will become more 

D Fou
nd

ati
on



Y. Mirsky, A. Demontis, J. Kotak et al. Computers & Security 124 (2023) 103006 

r

t

g

t

d

b

n

a

t

i

b

a

o

t

w

u

s

t

a

t

M

n

d

C

a  

n

a

5

t

(

g

a

r

t

p

s

o

o

t

t

t

t

f

T

b

g

d

4

k

n

g

I

l

v

a

f

t

a

c

v

s

a

o

w

a

u

c

t

l

w

5

e

t

c

o

i

t

n

t

a

w

f

A

f

a

q

t

5

v

s

t

n  

M

c

v

h

i

t

a

o

e

c

s

t

A

s

m

R

ampant and dangerous as humans and bots are given the ability 

o make convincing deepfake phishing calls. 

AI is a Double-Edged Sword. We observed that AI technolo- 

ies for security could also be used in an offensive manner. Some 

echnologies have a dual purpose. For example, ML research into 

isassembly, vulnerability detection, and penetration testing can 

e used for both malicious and defensive activities. Some tech- 

ologies can be repurposed. For example, instead of using explain- 

ble AI to validate malware detection, it can be used to hide ar- 

ifacts ( Kuppa and Le-Khac, 2020 ). And some technologies can be 

nverted. For example, an insider detection model ( Sutro, 2020 ) can 

e used to help cover tracks and avoid detection. To help raise 

wareness, we recommend that researchers note the implications 

f their work, even for defensive technologies. One caveat is that 

he usefulness of the ‘sword’ is not symmetric depending on the 

ielder. For example, generative AI (deepfakes) might be more 

seful for the attacker because it allows them to generate fake 

amples (e.g. video) that imitate the benign ones allowing the at- 

acker to accomplish its goal while remaining undetected. Whereas 

nomaly detection might be more beneficial for the defender. 

Limitations of this study. Our study analyzes AI techniques 

hat can be used by attackers against organizations through the 

ITRE ATT&CK Enterprise matrix. It is also important, however, to 

ote that MITRE also offers other matrices that can be used for 

ifferent use cases, namely one for Mobile 9 and one for Industrial 

ontrol Systems (ICS). 10 Although the Enterprise and Mobile tactics 

re almost the same, there are a few unique tactics for ICS that are

ot contemplated in our study, and that can be extended with the 

dditional non-overlapping threats identified by this scenario. 

.3. The industry’s perspective 

Using logic to automate attacks is not new to indus- 

ry – for instance, in 2015, security researchers from FireEye 

 Intelligence, 2015 ) found that advanced Russian cyber threat 

roups built a malware called HAMMERTOSS that used rules based 

utomation to blend its traffic into normal traffic by checking for 

egular office hours in the time zone and then operating only in 

hat time range. However, the scale and speed that offensive AI ca- 

abilities can endow attackers can be damaging. 

According to 2019 Verizon Data Breach report analysis of 140 

ecurity breaches ( Data, 2019 ), the mean time to compromise an 

rganization and exfiltrating the data ranges is already in the order 

f minutes. Organizations are already finding automated offensive 

actics difficult to combat and anticipate attacks to get stealthier in 

he future. For instance, according to the final report released by 

he US National Security Commission on AI in 2021 ( Final, 2021a ), 

he warning is clear “The U.S. government is not prepared to de- 

end the United States in the coming artificial intelligence (AI) era.”

he final report reasons that this is “Because of AI, adversaries will 

e able to act with micro-precision, but at macro-scale and with 

reater speed. They will use AI to enhance cyber attacks and digital 

isinformation campaigns and to target individuals in new ways.”

Most organizations see offensive AI as an imminent threat –

9% of 102 cybersecurity organizations surveyed by Forrester mar- 

et research in 2020 ( TEOAI, 2020 ), anticipate offensive AI tech- 

iques to manifest in the next 12 months. As a result, more or- 

anizations are turning to ways to defend against these attacks. 

n a 2021 survey ( Preparing, 2021b ) of 309 organizations’ business 

eaders, C-Suite executives found that 96% of the organizations sur- 

eyed are already making investments to guard against AI-powered 

ttacks as they anticipate more automation than what their de- 
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Presently, there are at least three nations which are actively 

hinking about securing ML systems: The USA through the NSCAI 

nd NIST AI Risk Management, Frameworks 11 the UK via their re- 

ent release of Principles of securing ML systems, 12 and the EU 

ia the EU AI act coupled with the recently proposed Cyber Re- 

ilience Act. 13 For the most part, these countries emphasise similar 

spects: securing the ML pipeline and drawing attention to vari- 

us attacks on AI systems. It is to be noted that all these frame- 

orks are nascent and are still under discussion. Moreover, their 

pproach is different too. For instance, the NIST framework is vol- 

ntary but the proposed EU framework would be mandated for 

ritical ML systems. It is a long road for these standards to come 

o fruition. Based on followups with our industry members, we be- 

ieve that organisations may be curious at best about these frame- 

orks but not actively adopting any at this time. 

.4. What’s on the horizon 

With AI’s rapid pace of development and open accessibility, we 

xpect to see a noticeable shift in attack strategies on organiza- 

ions. First, we foresee that the number of deepfake phishing in- 

idents will increase. In our opinion, this is because the technol- 

gy (1) is mature, (2) is harder to mitigate than regular phish- 

ng, (3) is more effective at exploiting trust, (4) can expedite at- 

acks, and (5) is new as a phishing tactic so cyber defenders are 

ot expecting it. Second, we expect that AI will enable adversaries 

o target more organizations in parallel and more frequently. As 

 result, instead of being covert, adversaries may choose to over- 

helm the defender’s response teams with thousands of attempts 

or the chance of one success. Finally, as adversaries begin to use 

I-enabled bots, defenders will be forced to automate their de- 

enses with bots as well. Keeping humans in the loop to control 

nd determine high-level strategies is a practical and ethical re- 

uirement. However, further discussion and research are necessary 

o form safe and agreeable policies. 

.5. What can be done? 

Attacks Using AI. Industry and academia should focus on de- 

eloping solutions for mitigating the top threats. Personnel can be 

hown what to expect from AI-powered social engineering and fur- 

her research can be done on detecting deepfakes, but in a man- 

er that is robust to a dynamic adversary ( Mirsky and Lee, 2021 ).

oreover, we recommend research into post-processing tools that 

an protect software from analysis after development (i.e., anti- 

ulnerability detection). 

Attacks Against AI. The advantages and vulnerabilities of AI 

ave profoundly questioned their widespread adoption, especially 

n mission-critical and cybersecurity-related tasks. In the mean- 

ime, organizations are working on automating the development 

nd operations of ML models (MLOps), without focusing too much 

n ML security-related issues. To bridge this gap, we argue that 

xtending the current MLOps paradigm to also encompass ML se- 

urity (MLSecOps) may be a relevant way toward improving the 

ecurity posture of such organizations. To this end, we envision 

he incorporation of security testing, protection and monitoring of 

I/ML models into MLOps. Doing so will enable organizations to 

eamlessly deploy and maintain more secure and reliable AI/ML 

odels. 
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. Conclusion 

In this study we first explored, categorized, and identified the 

hreats of offensive AI against organizations ( Sections 2 and 2.3 ). 

e then detailed the threats and ranked them through a panel 

urvey with experts from the domain ( Sections 3 and 4 ). Finally, 

e provided insights into our results and gave directions for fu- 

ure work ( Section 5 ). We hope this study will be meaningful and

elpful to the community in addressing the imminent threat of of- 

ensive AI. 
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ppendix A. The complete questionnaire 

1. Rating the threat 

In an attack on an organization, there are 7 malicious activities 

hat can be enhanced using AI: automation, information gathering, 

ampaign resilience, credential theft, social engineering, stealth, 

nd exploit development. 

Please rate accordingly: 

Harm. How harmful is an attacker with AI in this task? 

(damage, attack persistence, evasion, defense effort) 

Profit. How beneficial is AI to the attacker in this task? (com- 

pared to using non-AI methods) 

(attack success, flexibility, coverage, automation, and persis- 

tence). Assume that the AI tool has already been imple- 

mented. 

Achievability How easy is it for the attacker to use AI for this 

task? 

(implement, train, and deploy the AI) 

Defeatability How easy is it for the defender to detect or pre- 

vent it? 

(1 = hard to defeat, 7 = easy to defeat) 

Activity: Automation. 

Attack Customization (e.g., adjusting an exploit) (1 = low, 7 = 

igh) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Coordinated Attacks: (1 = low, 7 = high) 
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Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Information Sharing (among bots or threat agents) (1 = low, 7 

 high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Next-hop Targeting (e.g., lateral movement) (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Phishing Campaigns (e.g., automated into collection crafting of 

pear phishing emails, calls, ...) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Point of Entry Detection (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Activity: Information Gathering (IG). 

Mining OSINT (e.g., parsing websites, retrieving relevant info, ...) 

1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

AI Model Theft (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Spying (e.g., collecting and mining conversations from the mi- 

rophone, locations from the camera,...) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Activity: Campaign Resilience (CR). 

Malware Obfuscation (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Persistent Backdoors (e.g., automated reinfection, backdoor info 

hared among bots, ...) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Virtualization Detection (anti-forensics for malware) (1 = low, 

 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Activity: Credential Theft (CT). 

Biometric Spoofing (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Device Cache Mining (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Implicit Key Logging (e.g., using smartphone acceleration, 

eystroke sounds, ...) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Intelligent Password Guessing (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Side Channel Mining (e.g., memory or timing patterns) (1 = 

ow, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Activity: Social Engineering (SE). 

Impersonation (e.g., voice, text, video deepfakes and online so- 

ial profiles) (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Persona Building (e.g., a targeted trustworthy/attractive online 

rofile) (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 
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Spear Phishing (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Target Selection (e.g., weakest link with asset) (1 = low, 7 = 

igh) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Activity Tracking (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Activity: Stealth. 

Covering Tracks (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Web Domain Name Generation (e.g., DGAs to avoid detection 

nd blacklisting) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Evading Network or Host-based Intrusion Detection Systems (1 

 low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Evading Insider Detection Systems (e.g., replicate access pattern 

f other user) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Evading Email Filter (i.e., for SPAM and phishing) (1 = low, 7 = 

igh) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Data Exfiltration (e.g., evading firewall or over an air-gap for an 

solated network) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Propagation (lateral movement over a network) (1 = low, 7 = 

igh) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Scanning (e.g., local host, network assets, ports, vulnerabilities, 

..) (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Activity: Exploit Development (ED). 

Reverse Engineering (i.e., to assist in manually finding a vulner- 

bility or steal IP) (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

Vulnerability Detection (e.g., intelligent fuzzing, static analysis, 

..) (1 = low, 7 = high) 

Harm: __, Profit: __, Achievability: __, Defeatability: __ 

2. The impact on the cyber kill chain 

In an advanced persistent threat (APT) an adversary follows 14 

actics to attack an organization according to the MITRE A&TTACK 

atrix. However, at each step the defender can stop the attack and 

ffectively kill the chain of events, preventing the attacker from 

eaching its goal. 

Compared to using conventional methods, AI helps the attacker 

n... 

(strongly disagree, disagree somewhat disagree, neutral, somewhat 

gree, agree, strongly agree) 

(1) Reconnaissance: __, (2) Resource Development: __, (3) Initial 

ccess: __, (4) Execution: __, (5)Persistence: __, (6) Privilege Esca- 

ation: __, (7) Defense Evasion: __, (8) Credential Access: __, (9) 
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iscovery: __, (10) Lateral Movement: __, (11) Collection: __, (12) 

ommand & Control: __, (13) Exfiltration: __, (14) Impact: __ 

For each tactic, would AI help the attacker more than the de- 

ender? 

(strongly disagree, disagree somewhat disagree, neutral, somewhat 

gree, agree, strongly agree) 

(1) Reconnaissance: __, (2) Resource Development: __, (3) Initial 

ccess: __, (4) Execution: __, (5)Persistence: __, (6) Privilege Esca- 

ation: __, (7) Defense Evasion: __, (8) Credential Access: __, (9) 

iscovery: __, (10) Lateral Movement: __, (11) Collection: __, (12) 

ommand & Control: __, (13) Exfiltration: __, (14) Impact: __ 
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